Abelian varieties arising from Mumford’s Shimura curves
نویسنده
چکیده
In this paper, we study abelian varieties of dimension 4 over number fields with the property that the Lie algebra of their Mumford–Tate group is C-isomorphic to Ga (sl2)3. Such abelian varieties occur naturally as fibres of universal families of abelian varieties over Shimura curves associated to algebraic groups over Q that are C-isomorphic to (SL2) 3. We study the reductionsmodulo prime ideals of these abelian varieties, with the purpose to limit the possible Newton polygons and the possible isogeny types of these reductions. The techniques used also permit to construct an irreducible Galois representation of the absolute Galois group of a number fieldwhich is unramified outside a finite set of non-archimedian places andwith the property that its restriction to all decomposition groups is semi-stable. By a conjecture of Fontaine and Mazur, such a representation should ‘come from algebraic geometry’. It seems to be an interesting question whether this is the case for the representation constructed here. Résumé Dans cet article, on propose d’étudier des variétés abéliennes de dimension 4 sur des corps de nombres telles que l’algèbre de Lie du groupe deMumford–Tate soit isomorphe surC àGa (sl2)3. De telles variétés abéliennes apparaissent comme fibres des schémas abéliens universels sur des courbes de Shimura associées à des formes sur Q du groupe algébrique (SL2) 3. Plus précisément, on étudie les réductions de telles variétés abéliennes, dans le but de limiter le nombre de polygônes de Newton et de décompositions en facteurs simples possibles. Les arguments permettent également de construire une représentation irréductible du groupe de Galois absolu d’un corps de nombres qui est non ramifié en dehors d’un nombre fini de places finies et dont la restriction à tous les groupes de décomposition est semi-stable. Une conjecture de Fontaine et Mazur affirme qu’une telle représentation (( provient de la géometrie algébrique )) et il semble intéressant de savoir si cela est le cas ici.
منابع مشابه
On Finiteness Conjectures for Endomorphism Algebras of Abelian Surfaces
It is conjectured that there exist only finitely many isomorphism classes of endomorphism algebras of abelian varieties of bounded dimension over a number field of bounded degree. We explore this conjecture when restricted to quaternion endomorphism algebras of abelian surfaces of GL2type over Q by giving a moduli interpretation which translates the question into the diophantine arithmetic of S...
متن کاملModuli of Abelian Varieties
In this paper we generalize parts of Mumford’s theory of the equations defining abelian varieties. Using the concept of a strongly symmetric line bundle, which is weaker than Mumford’s concept of totally symmetric line bundle and is introduced here for the first time, we extend Mumford’s methods of obtaining equations to arbitrary levels and to ample strongly symmetric line bundles. The first t...
متن کاملA Characterization of Mumford Curves with Good Reduction
Mumford defines a certain type of Shimura curves of Hodge type, parametrizing polarized complex abelian fourfolds. It is the first example of non-PEL type Shimura varieties. In this paper, we study the good reduction of such curve in positive characteristics and give a characterization: a family has maiximal Higgs field and the corresponding Dieudonne crystal admits a special tensor decompositi...
متن کاملShimura curve computations
We introduce Shimura curves first as Riemann surfaces and then as moduli spaces for certain abelian varieties. We give concrete examples of these curves and do some explicit computations with them.
متن کاملOn Finiteness Conjectures for Modular Quaternion Algebras
It is conjectured that there exist finitely many isomorphism classes of simple endomorphism algebras of abelian varieties of GL2-type over Q of bounded dimension. We explore this conjecture when particularized to quaternion endomorphism algebras of abelian surfaces by giving a moduli interpretation which translates the question into the diophantine arithmetic of Shimura curves embedded in Hilbe...
متن کامل